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6.3 Two-Point Correlation

The Kolmogorov hypotheses, and deductions drawn from them, have no di-
rect connection to the Navier-Stokes equations (although, as in the previous
section, the continuity equation is usually invoked). And although in the
description of the energy cascade, the energy transfer to successively smaller
scales has been identified as a phenomenon of prime importance, the pre-
cise mechanism by which this transfer takes place has not been identified
or quantified. It is natural, therefore, to try to extract from the Navier-
Stokes equations useful information about the energy cascade. The earliest
attempts (outlined in this section) are those of Taylor (1935a) and of von
Karmén and Howarth (1938), which are based on the two-point correlation.
The next two sections gives the view from wavenumber space in terms of
the energy spectrum—the Fourier transform of the two-point correlation.

Autocorrelation Functions. Consider homogeneous isotropic turbulence,
with zero mean velocity, r.m.s. velocity u/(¢) and dissipation rate ¢(t). Be-
cause of homogeneity, the two-point correlation

Rij (I‘, t) = (ui (X +r, t)uj (X, t)>a (641)
is independent of x. At the origin it is
Rij(0,t) = (ujuj) = u'5;;. (6.42)

There is neither production nor transport, so the evolution equation for the

turbulent kinetic energy k(t) = %u'(t)2 (Eq. 5.132) reduces to
dk
= —¢. A4

dt c (6:43)

As with the structure function D;;, a consequence of isotropy is that R;;
can be expressed in terms of two scalar functions f(r,t) and g(r,t):

Rij(r,t) = u” {g(r, 1655 + [f(r,t) — g(r,t)]T;Zj} : (6.44)
(cf. Eq. 6.25). With r = e;r, this equation becomes

Ri/u” = f(r,t) = (ui(x +eir, thui (x, 1))/ (uf),

Baofu? = g(r1) = (ua(x+ern, ualx,0)/(ud),  (6.45)

R33 = RQQ, and Rij = 0, for ’L#],
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thus identifying f and g as the longitudinal and transverse autocorrela-
tion functions, respectively. (Note that f and g are non-dimensional with
f(0,t) = ¢(0,t) = 1.) Again in parallel with the properties of D;;, the
continuity equation implies OR;;/0r; = 0 (see Exercise 3.35) which, in com-
bination with Eq. (6.44), leads to

g(r,t) = f(r,t) + %r%f(r, t). (6.46)

Thus, in isotropic turbulence the two-point correlation R;;(r,) is completely
determined by the longitudinal autocorrelation function f(r,t). (which is
only in homogeneous, Figure 6.6 shows the measurements of f(r,t) in nearly
isotropic grid-generated turbulence obtained by Comte-Bellot and Corrsin
(1971).

There are two distinct longitudinal lengthscales Ly (t) and Af(t) that can
be defined from f; and then there are corresponding transverse lengthscales
Loy(t) and A\ (t) defined from g.

Integral Lengthscales. The first of the lengthscales obtained from f(r,t)
is the longitudinal integral scale

Lii(t) = /0 * fr,t) dr, (6.47)

which we have already encountered (e.g., in Section 5.1, Fig. 5.13 on page
113). The integral scale Lq1(¢) is simply the area under the curve of f(r,t),
and so inspection of Fig. 6.6 immediately reveals that L, grows with time
(in grid turbulence). As previously observed, L;; is characteristic of the
larger eddies. In isotropic turbulence, the transverse integral scale
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Los(t) = /Ooog(r7 t) dr, (6.48)

is just half of L11(t) (see Exercise 6.4).

Exercise 6.4 Show that Eq. (6.46) can be rewritten
1 0
g(r,t) =54 f(rt)+ E[rf(r, e, (6.49)
and hence that in isotropic turbulence the transverse integral scale
L22 (t) = / g(?", t) dr (650)
0
is half of the longitudinal scale, i.e.,
Loy (t) = SLu1(t). (6.51)
Exercise 6.5 Show from Eq. (6.46) that

/00 rg(r,t)dr =0, (6.52)

(assuming that f(r,t) decays more rapidly than 72 for large 7).

Taylor Microscales. The second lengthscale obtained from f(r,t) is the
longitudinal Taylor microscale A¢(t). Since f(r,t) is an even function of
r and no greater than unity, the first derivative at the origin f'(0,t) =
(0f /Or),—o is zero, while the second derivative f”(0,t) = (9%f/0r?),—o is
non-positive. As we shall see, in turbulence f”(0) is strictly negative, and
50 Af(t) defined by

Ap(t) = [—%f”(O, t)] 2 (6.53)

is real, positive and has dimensions of length.

A geometric construction makes this abstruse definition clear. Let p(r)
be the osculating parabola to f(r) at 7 = 0 (i.e., the parabola with p(0) =
£(0), p'(0) = f'(0), and p"(0) = f"(0)). Evidently p(r) is

p(r) = 1+ 5f"(0)r"
= 1-1r°/A} (6.54)
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Figure 6.7: Sketch of the longitudinal
velocity autocorrelation function showing
the definition of the Taylor microscale Ay.
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Thus, as sketched in Fig. 6.7, the osculating parabola intersects the axis at
T = )\f.

As the following manipulation shows, f”(0,¢) (and hence Af(t)) is related
to velocity derivatives:

—u? (0, 1) u'? lim —f(r t)

r—0 Or?
2

_ hm 88 5 (u1(x + err, t)ur (x, 1))

(G, e
(@)

oz )
(3] - (32)')
<(g—>2> (6.55)
< gz > . (6.56)

The transverse Taylor microscale \y(t), deﬁned by

Thus we obtain

Ag(t)z[ iy (O,t)] (6.57)
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is, in isotropic turbulence, equal to Af(t)/v/2 (see Exercise 6.6). It then
follows from these two equations and the relation ¢ = 150((du;/0x1)?)
(Eq. 5.171) that the dissipation is given by

e = 150U /X;. (6.58)

In a classic paper marking the start of the study of isotropic turbulence,
Taylor (1935a) defined A\, and obtained the above equation for e. He then
stated that “)\; may roughly be regarded as a measure of the diameter of
the smallest eddies which are responsible for the dissipation of energy.” This
deduction from Eq. (6.58) is incorrect, because it incorrectly supposes that
u' is the characteristic velocity of the dissipative eddies. Instead, the charac-
teristic length and velocity scales of the smallest eddies are the Kolmogorov
scales n and wu,,.

To determine the relationship between the Taylor and Kolmogorov scales,
we define L = k%/s to be the lengthscale characterizing the large eddies,
and the turbulence Reynolds number to be

1
k2L k?
Rep = -~ = (6.59)
v ev
Then the microscales are given by
_1
Ag/L =V10Re, ?, (6.60)
_3
n/L =Re;*, (6.61)
and .
Ag = V10n3L3. (6.62)

Thus at high Reynolds number, ), is intermediate in size between n and L.
The Taylor scale does not have a clear physical interpretation. It is,
however, a well-defined quantity that is often used. In particular, the Taylor-
scale Reynolds number
Ry =u' )\ /v, (6.63)
is traditionally used to characterize grid-turbulence. Observe, from Eq. (6.60),
that R varies as the square-root of the integral-scale Reynolds number

1

R,\ = (?RGL)5 . (6.64)
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In addition, it may be observed that the ratio
A/t = (15v/e)2 = V15 1, (6.65)

correctly characterizes the timescale of the small eddies.

Exercise 6.6 Show from Eq. (6.46) that
g"(r,t) = 2f"(r,t) + 5rf" (r,1), (6.66)

and hence that the transverse Taylor microscale

wl=

A(t) = [-L4"(0,1)] 2, (6.67)
is related to the longitudinal scale Af(t) by

Ao (t) = Ap(t)/V2. (6.68)

<<g;‘;)2> - 2}\‘;. (6.69)

Show

Karman-Howarth Equation. von Kdrman and Howarth (1938) obtained
from the Navier-Stokes equations an evolution equation for f(r,t). We out-
line here the principal steps, the result, and some implications: a detailed
derivation can be found in the original work or in standard references (e.g.,
Hinze 1975, Monin and Yaglom 1975).

The time derivative of R;;(r,x,t) can be expressed as

0 0
aRU(r, t) = a(ul(x +r,t)uj(x,t))
= <uj(x,t)%ui(x + r,t)>
+ <ui(x +r, t)%uj(x, t)> , (6.70)

and then the Navier-Stokes equations, i.e.,

Buj a(uzu]) 1 Bp aQUj
-2 = g, 71
ot 8.’Ez P a.’Ej + Uaxiaxi, (6 7 )



208 CHAPTER 6. THE SCALES OF TURBULENT MOTION

can be used to eliminate the time derivatives on the right-hand side of
Eq. (6.70). Three types of terms arise, corresponding to the convection,
pressure-gradient, and viscous terms in Eq. (6.71). For isotropic turbulence
the pressure-gradient term in the equation for R;;(r,t) is zero.

The convective term involves two-point triple velocity correlations, such
as

Sije(r,t) = (ui(x, t)u;j(x, t)ug(x + r,t)). (6.72)
Just as R;j is uniquely determined by f (Eq. 6.44), in isotropic turbulence

Sijk is uniquely determined by the longitudinal correlation

k‘(’f‘,t) = S]n(e1r,t)/u'3
= (u(x,t)%ui(x + ey, b)) Ju'. (6.73)
It can be shown that k(r,t) is an odd function of 7, and that the continuity

equation implies k'(0,) = 0, so that its series expansion is

E(r,t) = E"r? /30 + E¥ro /50 ... (6.74)

By this procedure, an exact equation for f(r,t) is obtained from the
Navier-Stokes equations: it is the Kdrmdn-Howarth equation

3 9 UI3 3 47N 21/’(1,’2 a 43f
a(u f) — 7“_45(7‘ k) = ']"4 E (’F E) . (675)

The principal observations to be made are:

(i) There is a closure problem. This single equation involves two unknown
functions f(r,t) and k(r,t).

(ii) The terms in k& and v represent inertial and viscous processes, respec-
tively.

(iii) At r = 0, the term in & vanishes (on account of Eq. 6.74); while, from
the fact that f is even in r, we obtain

Hence, for r = 0, the Karman-Howarth equation reduces to (% times)
the kinetic energy equation:

d , ) UIIQ 9
—u (t)° = —10v— = —3e. (6.77)
dt A2 3



